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Abstract: In viticulture, spatial variability of vine vigour may lead to differences in yield component 14 
and grape composition. In hilly landscapes, spatial variability is typically stronger due to soil and 15 
nutrient erosion, different water availability, and vine planting operation. Variable-rate fertilizer 16 
application may be used to manage such spatial variability aiming to provide different amounts of 17 
fertilizer according to the vine's needs, reducing the vine's spatial variability. The objective of this 18 
work was to evaluate the effects of variable-rate fertilizer application on vines' vigour, yield com- 19 
ponents, and grape composition spatial variability. A block of 8.5 hectares in a hilly landscape was 20 
chosen for this study. Variable-rate fertilizer application was performed by using a proximal spec- 21 
tral sensor (GreenSeeker) to directly control the fertilizer spread (on-the-go configuration) in a 2- 22 
year trial. According to the results, variable-rate fertilizer application significantly reduced the spa- 23 
tial variability in yield components, while the grape composition was slightly influenced. Further- 24 
more, geostatistical analysis performed on the spectral sensor data confirmed a reduction of the total 25 
variability (Sill) by 55% and the percentage of erratic variance (nugget effect) by 39%. This latter 26 
consideration represents an important advantage of on-the-go variable-rate fertilizer application 27 
since even small variability (4 vines) can be managed. 28 

Keywords: simplified precision viticulture; within-vineyard variability; vineyard fertilization; var- 29 
iable-rate technology; grape quality; smart agriculture; Vitis vinifera L.. 30 
 31 

1. Introduction 32 
In viticulture, yield, berry composition, and the final wine style obtained by separate 33 

winemaking processes may be spatially variable within the same block [1]. In this sense, 34 
natural spatial variability is present in blocks caused by soil profiles and topography [2]. 35 
In this regard, field arrangements before the vineyard establishment are among the main 36 
factors affecting soil characteristics and terroir expression. As a matter of fact, modern 37 
viticulture requires an appropriate field layout, especially in hilly areas, to make mecha- 38 
nization feasible in order to reduce operational costs and face the human labour shortage, 39 
also avoiding at the same time possible soil erosion [3,4]. Field levelling, excavation or 40 
earth-moving operations are usually performed in hilly areas in order to allow suitable 41 
vine canopy exposure and water management leading to a landscape modification [5]. 42 
Vine rows and water channels can be realized in the direction or perpendicularly to the 43 
line of the maximum slope, leading to a different water flow and different levels of 44 
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erosion. This soil preparation implies the remixing of soil layers which negatively impacts 45 
soil fertility and could create a remarkable spatial variability with zones inappropriate for 46 
vine development [3,6]. 47 

The vine terroir expression is reached when vine physiology is positively influenced 48 
by soil, water availability, climate, training systems, human labour and field management 49 
operations [7,8]. The remixing of soil fertility layers in this sense can inevitably result in a 50 
poor expression of terroir characteristics due to nutritional imbalances and different soil 51 
water retention properties that could lead to root asphyxia, soil compactness or altered 52 
soil microbiology, which costs a negative impact on homogeneity in terms of grape yield 53 
and, particularly, fruit characteristics [9]. In the particular case of the Conegliano-Valdob- 54 
biadene Prosecco Superiore DOCG (protected denomination of origin, located in North- 55 
east Italy) wine region, where the micro-zone characteristics inside the Consortium par- 56 
ticularly influence the wine profile, the within-field homogeneity of vineyard growth sta- 57 
tus is essential to achieve the high-quality standards required by this denomination in its 58 
19 micro-zones [10,11]. In fact, Vitis vinifera L. cv. Glera, the primary grape used for the 59 
production of this vine, is particularly influenced by the factors mentioned previously and 60 
the reply of this cultivar on limiting factors, such as altered soil characteristics, water 61 
shortages, costs of low yield and unappropriated macro-constituents (sugar, acidity and 62 
pH) profiles for the oenological purposes [12,13]. Therefore, the winegrower usually 63 
adopts agronomic and operational decisions to achieve the within-field homogeneity of 64 
the vineyard [14]. According to the traditional practices, these actions can be translated 65 
into different pruning interventions with, for e.g., the control of buds number per plant 66 
[15], fertilisations, soil in-row tillage, and application of cover crops, topping or irrigation 67 
[11]. All these operations influence grape physiology and growth, but when a condition 68 
of in-field spatial variability caused by vineyards arrangement is emphasized, the appli- 69 
cation of these operations and inputs in a fixed rate cannot give the expected result results 70 
[16]. 71 

In this regard, the solution for winegrowers aimed to reduce the within-field varia- 72 
bility is identified in the precision viticulture (PV) approach, which relies on the account- 73 
ing of spatial and temporal variability in field management. PV consists of applying pre- 74 
cision agriculture (PA) concepts to vineyard management. PA strategy is based on the 75 
collection and analysis of spatial and temporal data, which are combined together and 76 
processed to obtain valuable information that can be used to improve resource use effi- 77 
ciency and sustainability of agricultural systems. PV tools were applied to identify spatial 78 
variability of yield components and phenolic composition of berries [17], and sensors de- 79 
veloped for PV application were used for non-destructive estimation of grape composi- 80 
tion [18]. Several monitoring tools are used in PV to perform spatial variability assess- 81 
ment, such as satellites, unmanned aerial vehicles, portable spectrometers, and wireless 82 
sensor networks. In order to further improve the PV adoption rate, low-cost tools were 83 
proposed [19], while the reliability of low-cost platforms was assessed [20], highlighting 84 
the need for straightforward and affordable tools. Among the operations manageable with 85 
PV, fertilisation is one of the most important with direct influences on quantitative and 86 
qualitative performances of the vineyard and impacts in terms of economic, energetic, and 87 
environmental sustainability of the farm [21–24]. The distribution of fertiliser depending 88 
on the plant's needing and zone potential allows to reach an improved efficiency of the 89 
fertiliser nutritional effects reducing at the same time wastes of this input [25]. In this re- 90 
gard, in the last few years, the technologies have evolved quickly, providing solutions 91 
able to account for the spatial variability in terms of spectral indexes that describes the 92 
plant vigour or health [26], soil texture or humidity content with georesistivimeter or elec- 93 
tromagnetic sensors [27] or the vineyard yield and quality mapping [28]. This information 94 
helps delineate homogeneous zones and provides prescription maps of the variable rate 95 
application depending on zone potential and needs. 96 

Although all these steps can guarantee to reach a high accuracy of the prescription, 97 
this methodology is time consuming and often difficult to apply for the winegrower since 98 
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it requires specific data-science and analytics skills or important investments in terms of 99 
equipment for its application not always applicable, especially in realities characterized 100 
by small farm size such as the Prosecco Conegliano Valdobbiadene area. In this sense, the 101 
market has provided "simplified" solutions for the variable rate application of fertilizers 102 
based on on-the-go systems able to detect in real-time the field variability according to the 103 
plant health status (e.g. NDVI) and elaborate fertilizer rate application automatically with- 104 
out the needing of prescription maps or GNSS systems mounted in the tractor [29,30]. As 105 
a result, a straightforward approach for the winegrower to PV application is provided 106 
with benefits on the timing of this operation. Therefore, a futuristic vision, where the 107 
spread of this "simplified" system is reached among wineries, would be desirable in order 108 
to improve the fertilisation efficiency and sustainability. To do so, research that could ver- 109 
ify the effects of the aforementioned system is necessary since in the literature, a poor 110 
number of studies can be found, especially concerning viticulture. 111 

This work aims to assess the capacity to reduce the spatial variability of nutritional 112 
imbalances caused by field arrangements in terms of plant vigour, yield, and quality of a 113 
simplified PV system for the fertilisation of vineyards. In particular, two-year of variable- 114 
rate fertilisation was applied on a block characterized by a spatially structured variability, 115 
taking advantage of a real-time sensor-driven fertiliser spreader for variable rate applica- 116 
tion (VRA). Such an approach is pointed out as an economic solution able to be integrated 117 
into the farm machinery [31] to provide an immediate impact in terms of sustainability on 118 
the wine production chain. Furthermore, the proposed approach represents a case study 119 
of within-field variability reduction using simplified technological solutions which can be 120 
used in wine regions characterized by low within-field homogeneity. 121 

2. Materials and Methods 122 

2.1. Study area description and climatic profiles of the experimental site 123 
The study was carried out in 8.5-hectare commercial vineyard located in the Conegli- 124 

ano Valdobbiadene Prosecco Superiore DOCG wine region (45.935789 N, 12.255311 E, Vit- 125 
torio Veneto, Italy – Figure 1). The vineyard was planted with Vitis vinifera L. cv. Glera in 126 
2011 with a row spacing of 3.0 m and a vine spacing of 1.1 m, with a North-West/South- 127 
East orientation. The vines were trained in vertical shoot positioning (VSP), specifically 128 
the Sylvoz training system. An average slope of 10% characterized the vineyard, and vines 129 
were planted perpendicularly to the slope direction. Field levelling was carried out before 130 
planting, causing spatial variability in the topsoil. The vineyard is equipped with an un- 131 
derground irrigation system used for emergency irrigation (around 5 days/year). 132 

 133 
Figure 1. The vineyard was located in the Northeast of Italy in the Conegliano Valdobbiadene 134 
Prosecco DOCG consortium area. 135 
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The study area consists of an area classified as humid subtropical climate (Cfa) by 136 
Köppen and Geiger. In this regard, the environmental profiles elaborated from a weather 137 
station close to the experimental field of the two vintages subjected to this work are sum- 138 
marized in Table 1. The data shows an average temperature during the growing cycle 139 
(April-September) of 20,6 °C with an average rainfall of 797,3 mm. An increment in the 140 
average temperatures in the studied years and an increment in the average total rainfall 141 
occurred compared with historical data (1980-2018). In addition, the average temperature 142 
range, which is an indicator for the grape quality profiles (influencing especially colour, 143 
flavour and malic acid respiration) [32], calculated from August to September (which con- 144 
sists of the period from veraison to the commercial maturity of grape), indicates a higher 145 
temperature in the year 2020 than 2019. However, compared with historical data, this data 146 
is lower, suggesting that faster ripening of the vines characterises the area compared to 147 
the past. In addition, the Huglin heat sum index [33] was calculated between 1980 and 148 
2020 (Figure 2). The Huglin Index was 2457°C in 2020, showing an increase of over 15% 149 
compared to 1980. Such an increase identifies the climate change consequence at the field 150 
scale, which could indicate the future vine-growth conditions, identifying the need for 151 
more efficient and sustainable agricultural practices. 152 

 153 
Figure 2. Five-year average Huglin index of the Conegliano (6.4 km from the study area) meteoro- 154 
logical station (45.88132477 N, 12.28232702 E). Over the last 40 years, the Huglin index has in- 155 
creased by more than 15%.  156 

Table 1: Environmental profiles of the vine growth cycles in terms of average temperature, rainfall 157 
and average temperature range of the vintages considered in the study in comparison with aver- 158 
age long-term data (1980-2018) 159 

Year 

Average 
temperature 

(April- 
September) 

°C 

Rainfall 
(April- 

September) 
 

mm 

Average 
temperature 

(August- 
September) 

°C 

Rainfall 
(August- 

September) 
 

mm 

Average 
temperature 

range (August- 
September) 

°C 
Average 1980-2018 19,9 673,6 21,4 348,5 10,9 
Average 2019-2020 20,6 797,3 22,6 168,1 9,5 

2019 20,7 827,2 22,6 178,0 9,2 
2020 20,6 767,4 22,7 158,2 9,8 
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2.2. Fertilizer management and experimental design 160 
The selected block was uniformly managed until the end of the 2019 growing season. 161 

This uniform management relies on a fixed-rate application of fertilizer of 60 kgN ha-1, 20 162 
kgP ha-1, and 80 kgK ha-1 divided between two fertilizer applications in pre-blooming 163 
(BBCH 55) and after harvest (BBCH 91). At the end of the 2019 growing season, a survey 164 
with the Greenseeker sensor (Trimble Inc., Sunnydale, USA) was performed before har- 165 
vest. The Greenseeker is an active spectral sensor which measures canopy reflectance at 166 
656 nm and 774 nm and retrieves the NDVI [34], which was used by several authors to 167 
provide information related to yield spatial variability, plant vigour, and pruning weight 168 
[35]. Table 2 summarizes sensor surveys and fertilizer application during the experimen- 169 
tation. Following the obtained NDVI map, 10-sampling points were selected based on the 170 
measured NDVI values. In these points, a group of three vines were manually harvested 171 
to obtain a reference point before variable-rate management introduction. Fertilizer was 172 
applied according to the vigour level after the harvesting in 2019 and 2020 (BBCH 91). In 173 
early 2020, 30 t ha-1 of manure was applied only in low and medium vigour areas, while 174 
in 2020, 50-100-150 kg ha-1 of a complex fertilizer were applied for HV, MV, and LV, re- 175 
spectively. The pre-blooming fertilizer application was performed using a sensor-driven 176 
variable-rate spreader for 2020 and 2021 vintages, spreading 50-100-150 kg ha-1 of a com- 177 
plex fertilizer for HV, MV, and LV. The fertilizer applications were carried out with a New 178 
Holland T4.110F tractor (CNH Industrial N.V., Amsterdam, The Netherlands) and a Kuhn 179 
MDS 12.1 Q fertilizer spreader (Kuhn SAS, Severe, France). 180 

Table 2. Timesheet of surveys and fertilizer application 181 

 Action Strategy Rate Fertilizer Stages 
09-2019 NDVI survey    BBCH89 

01-2020 Fertilizer application 
Low – Medium NDVI  

areas 30 t ha-1 manure BBCH00 

05-2020 Fertilizer application 
Real-time VRA based on 

NDVI 50-100-150 kg ha-1 NPK 15-5-20 BBCH55 

09-2020 NDVI survey    BBCH89 

10-2020 Fertilizer application 
Prescription map VRA 

based on previous NDVI 50-100-150 kg ha-1 NPK 15-5-20 BBCH91 

06-2021 Fertilizer application 
Real time VRA based on 

NDVI 50-100-150 kg ha-1 NPK 15-5-20 BBCH57 

 182 
2.2.1. Real-time (on-the-go) variable rate fertilizer application procedure 183 

The fertilizer was applied using a real-time methodology (on-the-go) at the pre- 184 
blooming in 2020 and 2021 by taking advantage of the Greenseeker sensor and the variable 185 
rate spreader. Two Greenseeker sensors were mounted on a metal chassis in front of the 186 
tractor while the rear linkage was carrying the fertilizer spreader (Figure 3). Sensors and 187 
fertilizer spreader were equipped with their respective control units, which were wired 188 
with a display located in the tractor cab (FM1000, Trimble Inc.). First, the relation between 189 
the NDVI value and the fertilizer rate was manually defined according to the NDVI value 190 
measured beforehand in the 10-sampling points with different vigour levels. Then the av- 191 
erage NDVI values for each vigour zone (HV, MV, and LV) were entered into the display 192 
in the tractor cab with the corresponding levels of fertilizer (50-100-150 kg ha-1, respec- 193 
tively). Finally, the amount of fertilizer was chosen in order to re-balance the vine vigour. 194 

 195 
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(a) (b) 

Figure 3. Working configuration during the fertilizer application: (a) The Greenseeker sensor sys- 196 
tem; (b) The fertilizer spreader. 197 

2.3. Yield components and grape composition 198 
The 10-sampling points previously selected according to the first NDVI survey were 199 

chosen for experimental purposes since they were representative of each vigour area. A 200 
group of 9 vines was divided into three blocks and manually harvested at the ripening 201 
stage. The resulting grapes were weighted to obtain the average yield per vine. After that, 202 
grape juice was extracted using a manual grape crusher, and then the juice was analysed 203 
for the main quality components (sugar contents, titratable acidity, pH). The total soluble 204 
sugars were quantified by means of a digital refractometer (PR-32, ATAGO CO., LTD., 205 
Tokyo, Japan) and expressed in Brix%; in the same samples, the titratable acidity was 206 
measured using an automatic titrator (Crison micro TT 2022, Danaher Corporation, Wash- 207 
ington, USA) using 1N sodium hydroxide reagent (Honeywell International, Inc., Morris- 208 
town, NJ, USA). Finally, the pH was measured with a FlushTrode P/N 238060/80 probe 209 
(Hamilton, Reno, NV, USA).  210 

2.4. Statistical analysis 211 
K-Clustering unsupervised classification algorithm [36] has been used to classify 212 

three different clusters according to the information gained in each of the 10 monitored 213 
points. After that, normality and homoscedasticity of the data were checked (Shapiro- 214 
Wilk and Levene test), and a factorial ANOVA with the non-parametric test of Tukey HSD 215 
was performed to check the intra-variability of the data and among groups. All these anal- 216 
yses have been performed with R software [37]. The latter analysis involved yield compo- 217 
nents (yield per plant, number of clusters per plant, and cluster weight), grape composi- 218 
tion (sugar content, titratable acidity, and pH), and NDVI in pre-harvest. Spatial variabil- 219 
ity was analysed by considering different indexes to estimate the dispersion of the data. 220 
Coefficient of variation (CV) was calculated for yield components, grape composition pa- 221 
rameters, and NDVI, according to equation (1) for 2019 and 2020. 222 

𝐶𝑉(%) =
𝜎

𝜇
 (1)

The evaluation of spatial variability relies on geostatistical analysis to evaluate the 223 
variation of variables according to spatial features. The NDVI retrieved by the Green- 224 
Seeker in each of the four surveys (Table 2) was used to define the specific experimental 225 
variogram. These variograms were used to extract spatial specific parameters such as 226 
Nugget, Sill and Range. The sill describes the maximum variance achieved by the NDVI 227 
at a specific distance (the range). On the other hand, the nugget describes the variance at 228 
a null distance, summarizing the not spatially organized variance [38]. Nugget, sill and 229 
range can be used to calculate specific indexes describing the spatial structure of the given 230 
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variables. Experimental variograms were calculated with R software [35], using the au- 231 
tofitVariogram function of Automap packages with spherical models. 232 

Data extracted from the NDVI experimental variogram were used to calculate the 233 
Nugget Effect Index (NE) [39] according to equation (2) and the Mean Correlation Dis- 234 
tance (MCD) [40] according to equation (3). These indexes were then used to compare the 235 
spatial variability after the variable-rate fertilizer application in 2019 and 2020. 236 

𝑁𝐸 (%) =
𝑛𝑢𝑔𝑔𝑒𝑡

𝑠𝑖𝑙𝑙
 (2)

𝑀𝐶𝐷 (𝑚) =
3

8
×

𝑛𝑢𝑔𝑔𝑒𝑡

𝑠𝑖𝑙𝑙
 × 𝑟𝑎𝑛𝑔𝑒 (3)

According to Cambardella and Karlen [41], NE indicates how the data are spatially 237 
arranged. Specifically, a NE <25% describes a strong spatial dependence and small erratic 238 
variance; a NE between 25% and 75% describes a moderate spatial dependence, while a 239 
NE <75% stands for random spatial distribution. MCD estimates at which distance NDVI 240 
and spatially structured factors (e.g., soil) are highly related while accounting for the nug- 241 
get variability. 242 

3. Results 243 
3.1 Yield components and grape composition 244 

Data obtained in the ten sampling points examined in the two experimental years 245 
have been clustered in three groups per each year using a k-clustering algorithm (unsu- 246 
pervised classification) in order to determinate homogeneous zones profiles representa- 247 
tive of 3 class of vine vigour based on the pre-harvest NDVI values: low, medium and 248 
high. Results concerning the yield and quality components of the sampling are depicted 249 
in Table 3a and 3b, respectively. 250 

 251 
Table 3a: Average yield components classified in 3 different zones depending on Pre-Harvest NDVI 252 
investigation 253 

 Yield per plant 
(kg) 

N° of clusters 
per plant 

Cluster weight 
(g) 

Pre-harvest 
NDVI 

2019     
Low Vigor  2,64 ± 0,55 26,96 ± 2,74 98,79 ± 21,69 0,76 ± 0,04 

Medium vigor 4,52 ± 0,55 30,93 ± 3,33 147,34 ± 19,19 0,79 ± 0,05 

High vigor 7,56 ± 1,79 39,19 ± 6,22 192,45 ± 22,46 0,85 ± 0,02 

Average 4,91 ± 0,85 32,36 ± 4,09 146,19 ± 21,11 0,80 ± 0,04 

2020     

Low Vigor  3,17 ± 0,99 14,19 ± 3,50 224,99 ± 58,96 0,78 ± 0,03 

Medium vigor 5,87 ± 1,00 18,14 ± 5,05 331,47 ± 51,51 0,82 ± 0,01 

High vigor 5,90 ± 1,07 14,06 ± 0,08 419,98 ± 78,92 0,86 ± 0,00 

Average 4,98 ± 1,02 15,46 ± 2,87 325,48 ± 63,13 0,82 ± 0,01 

 254 
 255 
 256 
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Table 3b: Average yield components classified in 3 different zones depending on Pre-Harvest NDVI 257 
investigation  258 

 Sugar 
(° Brix) 

Titratable acidity 
(g/l) pH 

Pre-harvest 
NDVI 

2019     

Low Vigor  19,11 ± 0,54 5,03 ± 0,51 3,40 ± 0,05 0,76 ± 0,04 

Medium vigor 18,33 ± 0,58 5,52 ± 0,34 3,33 ± 0,05 0,79 ± 0,05 

High vigor 17,33 ± 0,90 6,06 ± 0,25 3,30 ± 0 0,85 ± 0,02 

Average 18,24 ± 0,68 5,53 ± 0,36 3,34 ± 0,03 0,80 ± 0,04 

2020     

Low Vigor  19,00 ± 0,67 5,07 ± 0,38 3,28 ± 0,07 0,78 ± 0,03 

Medium vigor 18,73 ± 0,61 4,62 ± 0,47 3,34 ± 0,02 0,82 ± 0,01 

High vigor 16,55 ± 1,20 7,29 ± 1,54 3,28 ± 0,04 0,86 ± 0,00 

Average 18,09 ± 0,83 5,66 ± 0,80 3,30 ± 0,05 0,82 ± 0,01 

 259 
Conceiving the two vintages analysed, the average yield per plant is generally simi- 260 

lar, with no significant differences. However, significant (P<0,05) changes can be found 261 
considering the clusters number and the cluster weight among the two vintages: in 2019, 262 
vines presented an averagely double number of clusters than in 2020, but in 2020 the lower 263 
number of clusters have been compensated by a higher cluster weight. Again, highlight- 264 
ing the sugar content is possible to see how this one is similar (null hypothesis acceptable) 265 
among the two vintages. The same is statable for titratable acidity and pH.  266 

Pre-harvest NDVI affects significantly (p<0.05) the quantitative yield (kg/plant) of 267 
vintage 2019. Higher yields were found when higher NDVI (average 0,86) values were 268 
found, thanks to a higher cluster number and cluster weight per plant. In the vintage 2020, 269 
the effect of pre-harvest NDVI value is less marked than in 2019, although generally, the 270 
sites with the lower NDVI have the lowest yield; on the other hand, the sites with a higher 271 
NDVI (from 0,82 to 0,86) generally presents a higher and similar yield per plant, high- 272 
lighting the fact that above a specific value of NDVI other physiological parameters, such 273 
as the cluster number per plant and the cluster weight, have a magnitude in the yield 274 
formation and concur with NDVI values for its determination. 275 

The spatial variability of yield components and grape composition was evaluated 276 
using CV calculated in the 10 sample points. Figure 4 shows the differences in the latter 277 
descriptors between the 2019 and 2020 vintage. Yield per plant, number of clusters, cluster 278 
weight, and pH showed a CV reduction of 39.2%, 21.1%, 6.25, and 50.0, respectively. On 279 
the other hand, after introducing a variable-rate fertilizer application, the CV of sugar 280 
content and titrable acidity increased by 40.0% and 177%, respectively. 281 

Considering the total amount of fertilizer used, the application of variable rate tech- 282 
nologies reduces 50% of the total amount of Nitrogen spread. The application of different 283 
thresholds of fertilizer (50-100-150 kg ha-1 of NPK 15-5-20) by using different NDVI thresh- 284 
olds chosen according to plants allowed to move from 60 kgN ha-1 to 30 kgN ha-1 after the 285 
introduction of variable rate fertilization. 286 

 287 
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 288 
Figure 4. Comparison between Coefficient Variation for yield components and grape 289 
composition in the 2019 and 2020 vintage 290 
 291 
3.2 Spatial structure analysis of NDVI 292 

Experimental variograms obtained from the four NDVI surveys were analysed in 293 
nugget, sill, range, NE, MCD, and CV. NDVI maps and semi-variogram for each survey 294 
are shown in Figure 5. Figure 6 summarizes the six parameters analysed among the four 295 
NDVI surveys. The mean NDVI value increased from 0.78 in September 2019 up to 0.85 296 
in June 2021. As shown in the maps in Figure 5, this increment of NDVI is mainly due to 297 
the reduction of points with low NDVI. 298 

The maximum variability of the NDVI data is summarized as semi-variance in the 299 
sill graph (Figure 6a). The Sill decreased from 0.0042 to 0.0019, with the highest step be- 300 
tween September 2019 and May 2020. Similarly, the nugget and the range (Figures 6b and 301 
6c) showed an overall reduction at the same time. The NE (Figure 6d) showed a general 302 
decrease, and a peak can be found in September 2020 due to a higher nugget value with a 303 
similar sill. The MCD, which index includes the range compared to the NE, showed a 304 
linear reduction from 16.9 m up to 5.9 m. Finally, the CV of the NDVI decreased from 8.1% 305 
up to 5.9% between September 2019 and May 2020, then it mainly remained stable at 306 
around 5%. 307 
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Mean Sill Nugget Range 
0.78 0.00424 0.00257 74.6 

 

 

 
Mean Sill Nugget Range 
0.79 0.00237 0.00137 59.8 

 

 

 
Mean Sill Nugget Range 
0.83 0.00234 0.00153 55.8 

 

 

 
Mean Sill Nugget Range 
0.85 0.00194 0.000723 41.9 

 

Figure 5. On the right side are shown the NDVI maps for each survey. On the left is the corresponding semi-variogram. 310 
NDVI colour ramp is constant within each map in order to highlight differences. 311 

09/19 

05/20 

09/20 

06/21 



Sustainability 2021, 13, x FOR PEER REVIEW 11 of 16 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Variation along the four NDVI surveys of Sill (a), Nugget (b), Range (c), Nugget Effect (d), Mean Correlation 312 
Distance (e) and Coefficient of Variation (f). 313 
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4. Discussion 314 
The introduction of variable rate fertilizer application using a real-time methodology 315 

(on-the-go) on a block characterized by high spatial variability implied different consid- 316 
erations in yield components, grape composition, and vigour spatial variability. 317 

The similarity in yield per plant but differences in cluster number and weight can be 318 
explained by the plasticity of Glera cv, which can regulate its production, adapting the 319 
cluster weight depending on its fertility and environmental conditions. A lighter, higher 320 
value in pH and titratable acidity can be found for 2020, probably due to a higher temper- 321 
ature range in that year's ripening period (Table 1). As a matter of fact, high NDVI can be 322 
correlated to a higher photosynthetic capacity of the plant, which can be easily interpreted 323 
into greater assimilation of photosynthesized ability to sustain a higher physiological ac- 324 
tivity. Conversely, the sugar contents are resulted lower where high NDVI was founded, 325 
probably due to a high yield load to sustain by the plant with a negative effect on sugar 326 
accumulation and dilution. Conversely, this effect is more marked in lower NDVI areas 327 
(average of 0.76). Nevertheless, higher plant yield positively affected the total acid's 328 
preservation, maintaining an almost 1 g/l higher concentration, which can be considered 329 
a positive parameter for the production of sparkling wines, such as the Prosecco's case. 330 
This result on yield components and grape composition confirms what was previously 331 
found by Davenport et al. [42], highlighting the positive effect of VRA on yield compo- 332 
nents and a limited effect on grape composition. 333 

However, is it possible to state that the effect of the VRA fertilisation applied affected 334 
homogenizing yield, especially among high and medium vigour areas. Conceiving the 335 
sugar content, again, the low vigour presented the higher sugars, probably due to a con- 336 
centration effect of the sugars caused by the smaller size of berries. However, the medium 337 
vigour area has also reached a similar value in the sugars. In contrast, high vigour areas 338 
highlighted a lower sugar content but a higher titratable acidity, probably a late-ripening 339 
due to a higher production to sustain. These considerations could open debates towards 340 
adopting selective harvesting strategies based on pre-harvest NDVI when a marked field 341 
variability is present to improve the oenological management of the further wine trans- 342 
formation. The spatial variability of yield components and grape composition calculated 343 
as the CV in the 10 sample points highlighted a reduction in yield components and a gen- 344 
eral increase in grape composition. The effects of variable rate fertilizer application 345 
showed positive effects on reducing the CV of yield components since they were charac- 346 
terized by a stronger variation, probably due to different vigour. According to this latter 347 
consideration, an object detection algorithm can be considered to assess the effects of VRA 348 
in viticulture by using image analysis [43]. Differently, grape composition variation was 349 
mainly due to temperature, and water availability differences during the analysed grow- 350 
ing seasons. Similar results were found by Gatti et al. [44] using satellite NDVI and MECS- 351 
VINE proximal sensors with a reduction from 8.20% to 1.42% of CV after the introduction 352 
of VRA. The validation of this approach using remote sensing may lead to additional con- 353 
sideration by using the inversion of the radiative transfer model [45]. 354 

Besides the discussed effects on yield components and grape composition, variable 355 
rate fertilizer application using a real-time methodology reduced the total amount of fer- 356 
tilizer spread by 50%. These results were obtained since the amount of HV vines increased 357 
after every fertilizer application because the higher amount fertilizer was spread to MV 358 
and LV, and the NDVI thresholds were chosen before each application. These results are 359 
comparable to what was obtained by Balafoutis et al. [46], which stated that the introduc- 360 
tion of precision viticulture leads to a reduction of 28.3% of product carbon footprint, 361 
where fertilizers contributed by 27.6% to this decrease. 362 

Furthermore, the effects of variable rate fertilizer application on spatial variability 363 
were investigated using geostatistical parameters extracted from the experimental vario- 364 
gram. This approach should be preferred in PV studies since it includes spatial variation 365 
[47]. The total spatial variation (Sill) decreased by 54.7% after introducing variable rate 366 
fertilization. The not spatially organized variance (Nugget) decreased by 73.1%, while the 367 
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effect of this variance on the total (NE) decreased by 38.6%. These results showed a reduc- 368 
tion of the erratic variance stronger than a reduction of the spatial dependent variance. 369 
The most common approach to variable-rate application is based on the interpretation of 370 
sensor data by the definition of management zones. Management zones are usually de- 371 
fined by a data fusion approach that summarises different sensor data inside each zone: 372 
The prescription is then chosen uniformly for each management zone. During this pro- 373 
cess, sensor data aggregation reduces the ability to detect small variances. In this study, a 374 
real-time (on-the-go) system was used, which was able to control the fertilizer application 375 
directly. A small variance in vine vigour was detected and controlled by the spread of 376 
different amounts of fertilizer, leading to a substantial reduction of the nugget. This small 377 
variability correspond to the mean average distance of the points which was by way of 378 
example 1.82 m in the survey of May 2020. At this distance and considering the two row 379 
of vine managed by the fertilizer spreader the the presented methodology for variable- 380 
rate fertilizer application was able to manage a group of 4 vines. Similarly, the MCD 381 
showed a reduction of 65.1%, showing a reduction in spatial autocorrelation and struc- 382 
ture. 383 

The study of the vine vigour and its spatio-temporal variability has to consider the 384 
trellis system and the pruning methods. Indeed, different vine training systems are char- 385 
acterized by a different selection of buds, especially if vines are hand pruned [48]. In the 386 
spur pruning system, the number of buds can slightly change during years, while in the 387 
cane pruning system, hand pruned, the number of buds can be changed according to vine 388 
vigour to preserve grape quality. Consequently, spur-pruned vineyard vine vigour is sta- 389 
ble during years [49]. The block described in this study is characterized by Sylvoz trellis, 390 
where the number of buds chosen during hand pruning is limited. According to this, the 391 
results of this study suggest that the reduction of vine vigour variability was mainly due 392 
to the introduction of VRA. Kazmierski et al. suggest regularly renewing spatial variabil- 393 
ity assessment in the case of VRA application [50]. By the use of proximal sensors, the 394 
vigour variability assessment can be performed during each fertilizer application. 395 

The strong spatial dependence of vine vigour found in this study can be a conse- 396 
quence of slope vineyards [51]. According to the hilly landscape of the Conegliano Val- 397 
dobbiadene Prosecco area, the VRA approach can provide advantages in terms of varia- 398 
bility reduction. 399 

5. Conclusions 400 
Spatial variability in vine vigour may lead to differences in yield components and 401 

grape composition, affecting the following oenological procedures. In hilly areas, spatial 402 
variability may be exacerbated by field levelling and earth-moving operations usually 403 
performed before the vineyard plantation. In addition, soil and nutrient erosion may 404 
change plant vigour's spatial variability, leading concurrently to land degradation and 405 
water pollution. In the current paper, spatial vigour variability was reduced using varia- 406 
ble-rate fertilization by using a proximal sensor that controlled the amount of fertilizer 407 
spread in real-time. According to the results, this approach reduced the spatial variability 408 
in yield components, while grape composition did not show a significant variation in 409 
terms of spatial variability. 410 

Furthermore, the geostatistical parameters extracted from the proximal sensor data 411 
confirmed variability reduction, especially in terms of erratic variance. This reduction of 412 
non-structured variability represents a peculiarity of this on-the-go approach since the 413 
sensor and implement were able to manage small variability (4 vines) by changing the 414 
fertiliser rate. In addition, variogram paraments extracted from the proximal sensors data 415 
can be used to compare different geographic areas or production systems. 416 

 417 
Author Contributions: Conceptualization, M.S. and D.T.; methodology, M.S., D.B., and D.T.; soft- 418 
ware, M.S. and A.Z.; formal analysis, M.S., D.B., and A.Z.; writing—original draft preparation, M.S. 419 



Sustainability 2021, 13, x FOR PEER REVIEW 14 of 16 
 

and D.B.; writing—review and editing, M.S., A.Z., and D.B.; supervision, F.M. and D.T. All authors 420 
have read and agreed to the published version of the manuscript. 421 

Funding: This research received external funding from the Veneto Region  422 

Acknowledgments: In this section, you can acknowledge any support given which is not covered 423 
by the author contribution or funding sections. This may include administrative and technical sup- 424 
port, or donations in kind (e.g., materials used for experiments). 425 

Conflicts of Interest: The authors declare no conflict of interest 426 

References 427 

1.  Bramley, R.G.V.; Hamilton, R.P. Terroir and precision viticulture: Are they compatible? J. Int. des Sci. la Vigne du Vin 2007, 41, 428 
1–8, doi:10.20870/oeno-one.2007.41.1.855. 429 

2.  Yu, R.; Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Spatial Variability of Soil and Plant Water Status and Their Cascading 430 
Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Front. Plant Sci. 2020, 11, 790, 431 
doi:10.3389/fpls.2020.00790. 432 

3.  Ramos, M.C.; Martínez-Casasnovas, J.A. Impact of land levelling on soil moisture and runoff variability in vineyards under 433 
different rainfall distributions in a Mediterranean climate and its influence on crop productivity. J. Hydrol. 2006, 321, 131– 434 
146, doi:10.1016/j.jhydrol.2005.07.055. 435 

4.  Cogato, A.; Pezzuolo, A.; Sørensen, C.G.; De Bei, R.; Sozzi, M.; Marinello, F. A GIS-Based Multicriteria Index to Evaluate the 436 
Mechanisability Potential of Italian Vineyard Area. Land 2020, 9, 469, doi:10.3390/land9110469. 437 

5.  Ferrari, G.; Ioverno, F.; Sozzi, M.; Marinello, F.; Pezzuolo, A. Land-Use Change and Bioenergy Production: Soil Consumption 438 
and Characterization of Anaerobic Digestion Plants. 2021, doi:10.3390/en14134001. 439 

6.  Brye, K.R.; Slaton, N.A.; Savin, M.C.; Norman, R.J.; Miller, D.M. Short-Term Effects of Land Leveling on Soil Physical 440 
Properties and Microbial Biomass. Soil Sci. Soc. Am. J. 2003, 67, 1405–1417, doi:10.2136/sssaj2003.1405. 441 

7.  Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. 442 
8.  Belda, I.; Gobbi, A.; Ruiz, J.; de Celis, M.; Ortiz-Álvarez, R.; Acedo, A.; Santos, A. Microbiomics to Define Wine Terroir. In 443 

Comprehensive Foodomics; Elsevier, 2021; pp. 438–451. 444 
9.  Nerva, L. Geological Characteristics of Close Geographical Related Vineyards Inuence Microbiomes of Two Soil Depth Proles 445 

With Potential Impacts on Wine Quality. 2020, doi:10.21203/rs.3.rs-64048/v1. 446 
10.  Tomasi, D.; Gaiotti, F.; Jones, G. V. The power of the terroir: The case study of prosecco wine; Springer Basel, 2013; ISBN 447 

9783034806282. 448 
11.  Gaiotti, F.; Tomasi, D. I terroirs del Conegliano Valdobbiadene Prosecco: studio sull’origine della qualità nelle colline patrimonio Unesco; 449 

Antiga Edizioni, 2020; ISBN 9788884352057. 450 
12.  Pepi, S.; Sansone, L.; Chicca, M.; Vaccaro, C. Relationship among geochemical elements in soil and grapes as terroir 451 

fingerprintings in Vitis vinifera L. cv. "Glera". Chemie der Erde 2017, 77, 121–130, doi:10.1016/j.chemer.2017.01.003. 452 
13.  Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D'Onofrio, C.; Tomasi, D. Influence of vineyard altitude on Glera grape 453 

ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2017, 97, 2695–2705, 454 
doi:10.1002/jsfa.8093. 455 

14.  Vine, R.P.; Harkness, E.M.; Linton, S.J. Viticulture (Grape Growing). In Winemaking; Springer, 2002; pp. 24–70. 456 
15.  Tomasi, D.; Gaiotti, F.; Petoumenou, D.; Lovat, L.; Belfiore, N.; Boscaro, D.; Mian, G. Winter pruning: Effect on root density, 457 

root distribution and root/canopy ratio in vitis vinifera cv. Pinot Gris. Agronomy 2020, 10, doi:10.3390/agronomy10101509. 458 
16.  Bois, B.; Pauthier, B.; Brillante, L.; Mathieu, O.; Leveque, J.; Van Leeuwen, C.; Castel, T.; Richard, Y. Sensitivity of Grapevine 459 

Soil–Water Balance to Rainfall Spatial Variability at Local Scale Level. Front. Environ. Sci. 2020, 8, 110, 460 
doi:10.3389/fenvs.2020.00110. 461 

17.  Brillante, L.; Martínez-Luscher, J.; Yu, R.; Plank, C.M.; Sanchez, L.; Bates, T.L.; Brenneman, C.; Oberholster, A.; Kurtural, S.K. 462 



Sustainability 2021, 13, x FOR PEER REVIEW 15 of 16 
 

Assessing Spatial Variability of Grape Skin Flavonoids at the Vineyard Scale Based on Plant Water Status Mapping. J. Agric. 463 
Food Chem. 2017, 65, 5255–5265, doi:10.1021/acs.jafc.7b01749. 464 

18.  Baluja, J.; Diago, M.P.; Goovaerts, P.; Tardaguila, J. Assessment of the spatial variability of anthocyanins in grapes using a 465 
fluorescence sensor: Relationships with vine vigour and yield. Precis. Agric. 2012, 13, 457–472, doi:10.1007/s11119-012-9261- 466 
x. 467 

19.  Spachos, P. Towards a Low-Cost Precision Viticulture System Using Internet of Things Devices. IoT 2020, 1, 5–20, 468 
doi:10.3390/iot1010002. 469 

20.  Sozzi, M.; Kayad, A.; Gobbo, S.; Cogato, A.; Sartori, L.; Marinello, F.; Singh, V.; Huang, Y. Economic Comparison of Satellite, 470 
Plane and UAV-Acquired NDVI Images for Site-Specific Nitrogen Application: Observations from Italy. Agronomy 2021, 11, 471 
2098, doi:10.3390/agronomy11112098. 472 

21.  Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387, 473 
doi:10.1023/B:PRAG.0000040806.39604.aa. 474 

22.  Keller, M. The Science of Grapevines: Anatomy and Physiology: Second Edition; Elsevier Inc., 2015; ISBN 9780124199873. 475 
23.  Recchia, L.; Boncinelli, P.; Cini, E.; Vieri, M.; Pegna, F.G.; Sarri, D. Multicriteria Analysis and LCA Techniques: With 476 

Applications to Agro-Engineering Problems. Green Energy Technol. 2011, 91, doi:10.1007/978-0-85729-704-4. 477 
24.  Recchia, L.; Sarri, D.; Rimediotti, M.; Boncinelli, P.; Cini, E.; Vieri, M. Towards the environmental sustainability assessment 478 

for the viticulture. J. Agric. Eng. 2018, 49, 19–28, doi:10.4081/JAE.2018.586. 479 
25.  Casa, R.; Cavalieri, A.; lo Cascio, B. Nitrogen fertilisation management in precision agriculture: A preliminary application 480 

example on maize. Ital. J. Agron. 2011, 6, 23–27, doi:10.4081/ija.2011.e5. 481 
26.  Cogato, A.; Wu, L.; Jewan, S.Y.Y.; Meggio, F.; Marinello, F.; Sozzi, M.; Pagay, V. Evaluating the Spectral and Physiological 482 

Responses of Grapevines (Vitis vinifera L.) to Heat and Water Stresses under Different Vineyard Cooling and Irrigation 483 
Strategies. Agron. 2021, Vol. 11, Page 1940 2021, 11, 1940, doi:10.3390/AGRONOMY11101940. 484 

27.  Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal Soil Sensing: An Effective 485 
Approach for Soil Measurements in Space and Time. In Advances in Agronomy; Academic Press Inc., 2011; Vol. 113, pp. 243– 486 
291. 487 

28.  Taylor, J.A.; Sanchez, L.; Sams, B.; Haggerty, L.; Jakubowski, R.; Djafour, S.; Bates, T.R. Evaluation of a commercial grape 488 
yield monitor for use mid-season and at-harvest. J. Int. des Sci. la Vigne du Vin 2016, 50, 57–63, doi:10.20870/oeno- 489 
one.2016.50.2.784. 490 

29.  Sozzi, M.; Bernardi, E.; Kayad, A.; Marinello, F.; Boscaro, D.; Cogato, A.; Gasparini, F.; Tomasi, D. On-The-go variable rate 491 
fertilizer application on vineyard using a proximal spectral sensor; 2020; pp. 343–347;. 492 

30.  Mcbratney, A.B.; Taylor, J.A. "PV or not PV?". In Proceedings of the 5th International Symposium on Cool Climate Viticulture 493 
and Oenology- a workshop on Precision Management; Melbourne, Australia, 2000. 494 

31.  Vieri, M.; Lisci, R.; Rimediotti, M.; Sarri, D. The RHEA-project robot for tree crops pesticide application. J. Agric. Eng. 2013, 495 
44, 359–362, doi:10.4081/JAE.2013.(S1):E71. 496 

32.  Hunter, J.J.; Bonnardot, V. Suitability of Some Climatic Parameters for Grapevine Cultivation in South Africa, with Focus on 497 
Key Physiological Processes. South African J. Enol. Vitic. 2011, 32, 137–154, doi:10.21548/32-1-1374. 498 

33.  Huglin, M.P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus l’Académie 499 
d’Agriculture Fr. 1978, 64, 1117–1126. 500 

34.  Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. Third Earth 501 
Resour. Technol. Satell. Symp. 1973, 1, 309–317, doi:citeulike-article-id:12009708. 502 

35.  Taylor, J.A.; Bates, T.R. Comparison of Different Vegetative Indices for Calibrating Proximal Canopy Sensors to Grapevine 503 
Pruning Weight. Am. J. Enol. Vitic. 2021, ajev.2021.20042, doi:10.5344/ajev.2021.20042. 504 



Sustainability 2021, 13, x FOR PEER REVIEW 16 of 16 
 

36.  Cinat, P.; Di Gennaro, S.F.; Berton, A.; Matese, A. Comparison of Unsupervised Algorithms for Vineyard Canopy 505 
Segmentation from UAV Multispectral Images. Remote Sens. 2019, 11, 1023, doi:10.3390/rs11091023. 506 

37.  R Core Team R: A language and environment for statistical computing 2021. 507 
38.  Leroux, C.; Tisseyre, B. How to measure and report within-field variability: a review of common indicators and their 508 

sensitivity. Precis. Agric. 2019, 20, 562–590, doi:10.1007/s11119-018-9598-x. 509 
39.  Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability 510 

of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511, doi:10.2136/sssaj1994.03615995005800050033x. 511 
40.  S. Han; J. W. Hummel; C. E. Goering; M. D. Cahn Cell Size Selection for Site-specific Crop Management. Trans. ASAE 1994, 512 

37, 19–26, doi:10.13031/2013.28048. 513 
41.  Cambardella, C.A.; Karlen, D.L. Spatial Analysis of Soil Fertility Parameters. Precis. Agric. 1999, 1, 5–14, 514 

doi:10.1023/A:1009925919134. 515 
42.  Davenport, J.R.; Marden, J.M.; Mills, L.J.; Hattendorf, M.J. Response of Concord Grape to Variable Rate Nutrient 516 

Management. Am. J. Enol. Vitic. 2003, 54, 286–293. 517 
43.  Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic Bunch Detection in White Grape Varieties Using 518 

YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms. 2022, doi:10.3390/agronomy12020319. 519 
44.  Gatti, M.; Squeri, C.; Garavani, A.; Vercesi, A.; Dosso, P.; Diti, I.; Poni, S. Effects of variable rate nitrogen application on cv. 520 

Barbera performance: vegetative growth and leaf nutritional status. Am. J. Enol. Vitic. 2018, doi:10.5344/ajev.2018.17084. 521 
45.  Kayad, A.; Rodrigues, F.A.; Naranjo, S.; Sozzi, M.; Pirotti, F.; Marinello, F.; Schulthess, U.; Defourny, P.; Gerard, B.; Weiss, M. 522 

Radiative transfer model inversion using high-resolution hyperspectral airborne imagery – Retrieving maize LAI to access 523 
biomass and grain yield. F. Crop. Res. 2022, 282, 108449, doi:10.1016/J.FCR.2022.108449. 524 

46.  Balafoutis, A.T.; Koundouras, S.; Anastasiou, E.; Fountas, S.; Arvanitis, K. Life cycle assessment of two vineyards after the 525 
application of precision viticulture techniques: A case study. Sustain. 2017, 9, 1997, doi:10.3390/su9111997. 526 

47.  Taylor, J.A.; Dresser, J.L.; Hickey, C.C.; Nuske, S.T.; Bates, T.R. Considerations on spatial crop load mapping. Aust. J. Grape 527 
Wine Res. 2019, 25, 144–155, doi:10.1111/ajgw.12378. 528 

48.  Bramley, R.G.V.; Trought, M.C.T.; Praat, J.P. Vineyard variability in Marlborough, New Zealand: Characterising variation in 529 
vineyard performance and options for the implementation of Precision Viticulture. Aust. J. Grape Wine Res. 2011, 17, 83–89, 530 
doi:10.1111/j.1755-0238.2010.00119.x. 531 

49.  Bramley, R.G.V.; Ouzman, J.; Trought, M.C.T.; Neal, S.M.; Bennett, J.S. Spatio-temporal variability in vine vigour and yield 532 
in a Marlborough Sauvignon Blanc vineyard. Aust. J. Grape Wine Res. 2019, 25, 430–438, doi:10.1111/ajgw.12408. 533 

50.  Kazmierski, M.; Glemas, P.; Rousseau, J.; Tisseyre, B. Temporal stability of within-field patterns of ndvi in non irrigated 534 
mediterranean vineyards. J. Int. des Sci. la Vigne du Vin 2011, 45, 61–73, doi:10.20870/oeno-one.2011.45.2.1488. 535 

51.  Verdugo-Vásquez, N.; Villalobos-Soublett, E.; Gutiérrez-Gamboa, G.; Araya-Alman, M. Spatial variability of production and 536 
quality in table grapes ‘flame seedless’ growing on a flat terrain and slope site. Horticulturae 2021, 7, 1–13, 537 
doi:10.3390/horticulturae7080254. 538 

 539 


